skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Becker, Jordan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ye, Bing (Ed.)
    InDrosophila, two interacting adhesion protein families, Defective proboscis responses (Dprs) and Dpr interacting proteins (DIPs), coordinate the assembly of neural networks. While intercellular DIP::Dpr interactions have been well characterized, DIPs and Dprs are often co-expressed within the same cells, raising the question as to whether they also interact incis. We show, in cultured cells andin vivo, that DIP-α and DIP-δ can interact inciswith their ligands, Dpr6/10 and Dpr12, respectively. When co-expressed inciswith their cognate partners, these Dprs regulate the extent oftransbinding, presumably through competitivecisinteractions. We demonstrate the neurodevelopmental effects ofcisinhibition in fly motor neurons and in the mushroom body. We further show that a long disordered region of DIP-α at the C-terminus is required forcisbut nottransinteractions, likely because it alleviates geometric constraints oncisbinding. Thus, the balance betweencisandtransinteractions plays a role in controlling neural development. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  2. Significance The choroid plexus (ChP) epithelial network displays diverse dynamics, including propagating calcium waves and individuated fluctuations in single cells. These rapid events underscore the possibility that ChP dynamics may reflect behaviorally relevant and clinically important changes in information processing and signaling. Optogenetic and chemogenetic tools provide spatiotemporally precise and sustained approaches for testing such dynamics in vivo. Here, we describe the feasibility of a novel combined opto- and chemogenetic tool, BioLuminescent-OptoGenetics (BL-OG), for the ChP in vivo. In the “LuMinOpsin” (LMO) BL-OG strategy, a luciferase is tethered to an adjacent optogenetic element. This molecule allows chemogenetic activation when the opsin is driven by light produced through luciferase binding a small molecule (luciferin) or by conventional optogenetic light sources and BL-OG report of activation through light production. Aim To test the viability of BL-OG/LMO for ChP control. Approach Using transgenic and Cre-directed targeting to the ChP, we expressed LMO3 (a Gaussia luciferase-VChR1 fusion), a highly effective construct in neural systems. In mice expressing LMO3 in ChP, we directly imaged BL light production following multiple routes of coelenterazine (CTZ: luciferin) administration using an implanted cannula system. We also used home-cage videography with Deep LabCut analysis to test for any impact of repeated CTZ administration on basic health and behavioral indices. Results Multiple routes of CTZ administration drove BL photon production, including intracerebroventricular, intravenous, and intraperitoneal injection. Intravenous administration resulted in fast “flash” kinetics that diminished in seconds to minutes, and intraperitoneal administration resulted in slow rising activity that sustained hours. Mice showed no consistent impact of 1 week of intraperitoneal CTZ administration on weight, drinking, motor behavior, or sleep/wake cycles. Conclusions BL-OG/LMO provides unique advantages for testing the role of ChP dynamics in biological processes. 
    more » « less
  3. Abstract The Msh2–Msh3 mismatch repair (MMR) complex in Saccharomyces cerevisiae recognizes and directs repair of insertion/deletion loops (IDLs) up to ∼17 nucleotides. Msh2–Msh3 also recognizes and binds distinct looped and branched DNA structures with varying affinities, thereby contributing to genome stability outside post-replicative MMR through homologous recombination, double-strand break repair (DSBR) and the DNA damage response. In contrast, Msh2–Msh3 promotes genome instability through trinucleotide repeat (TNR) expansions, presumably by binding structures that form from single-stranded (ss) TNR sequences. We previously demonstrated that Msh2–Msh3 binding to 5′ ssDNA flap structures interfered with Rad27 (Fen1 in humans)-mediated Okazaki fragment maturation (OFM) in vitro. Here we demonstrate that elevated Msh2–Msh3 levels interfere with DNA replication and base excision repair in vivo. Elevated Msh2–Msh3 also induced a cell cycle arrest that was dependent on RAD9 and ELG1 and led to PCNA modification. These phenotypes also required Msh2–Msh3 ATPase activity and downstream MMR proteins, indicating an active mechanism that is not simply a result of Msh2–Msh3 DNA-binding activity. This study provides new mechanistic details regarding how excess Msh2–Msh3 can disrupt DNA replication and repair and highlights the role of Msh2–Msh3 protein abundance in Msh2–Msh3-mediated genomic instability. 
    more » « less